

Photocatalysis

International Edition: DOI: 10.1002/anie.201501180
German Edition: DOI: 10.1002/ange.201501180

A Ruthenium(II)-Copper(II) Dyad for the Photocatalytic Oxygenation of Organic Substrates Mediated by Dioxygen Activation**

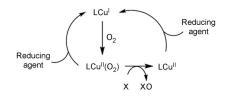
Wissam Iali, Pierre-Henri Lanoe, Stéphane Torelli,* Damien Jouvenot, Frédérique Loiseau, Colette Lebrun, Olivier Hamelin,* and Stéphane Ménage

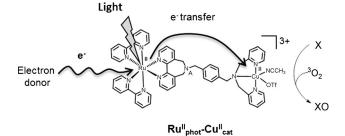
Abstract: Dioxygen activation by copper complexes is a valuable method to achieve oxidation reactions for sustainable chemistry. The development of a catalytic system requires regeneration of the Cu^I active redox state from Cu^{II}. This is usually achieved using extra reducers that can compete with the $Cu^{II}(O_2)$ oxidizing species, causing a loss of efficiency. An alternative would consist of using a photosensitizer to control the reduction process. Association of a Ru^{II} photosensitizing subunit with a Cu^{II} pre-catalytic moiety assembled within a unique entity is shown to fulfill these requirements. In presence of a sacrificial electron donor and light, electron transfer occurs from the Ru^{II} center to Cu^{II}. In presence of dioxygen, this dyad proved to be efficient for sulfide, phosphine, and alkene catalytic oxygenation. Mechanistic investigations gave evidence about a predominant 3O_2 activation pathway by the Cu^I moiety.

From an environmental point of view, there is a growing interest in designing catalysts capable of using O_2 as oxygen atom source to perform oxidation reactions to avoid strong, toxic, and expensive oxidants. Indeed, O_2 is nowadays considered as an appealing oxidant for sustainable oxidation chemistry. Nature has developed a large panel of metal-containing enzymes to perform selective and efficient oxidation reactions through dioxygen activation. O₂ activation at a metal center generally entails its two-electron reduction to

[*] Dr. W. Iali, Dr. S. Torelli, Dr. O. Hamelin, Dr. S. Ménage Laboratoire Chimie et Biologie des Métaux Université Grenoble-Alpes CEA, DSV/iRTSV, LCBM—CNRS, UMR5249 38041 Grenoble (France) E-mail: stephane.torelli@cea.fr

Homepage: http://www-dsv.cea.fr/irtsv/lcbm/bioce Dr. P.-H. Lanoe, Dr. D. Jouvenot, Prof. F. Loiseau Département de Chimie Moléculaire Université Grenoble-Alpes; CNRS UMR 5250, BP53 38041 Grenoble (France)


ohamelin@cea.fr


C. Lebrun
Laboratoire de Reconnaissance Ionique et
Chimie de Coordination—Université Grenoble-Alpes
CEA, DSV/iRTSV, LCBM—CNRS, UMR5249
38041 Grenoble (France)

under http://dx.doi.org/10.1002/anie.201501180.

[***] This work has been supported by the Labex ARCANE (ANR-11-LABX-0003-01) and the ANR program (ANR wateract ANR-11-BS07-0004). Jacques Pécaut is acknowledged for X-ray diffraction analysis.
 Supporting information for this article is available on the WWW

the peroxo state and subsequent O–O bond cleavage. In dinuclear centers, the second metal ion acts as a reductant, while in mononuclear active sites, an external electron donor is required. This is the case for copper metalloenzymes such as dopamine β -monooxygenase (D β M), peptidylglycine α -hydroxylating monooxygenase (PHM), and the recently identified insect tyramine β -monooxygenase (T β M) that are involved in the transformation of various substrates by Cu I /O $_2$ chemistry. The catalytic activity is achieved owing to the presence, in close proximity, of a reducing co-factor that allows a regeneration of the active Cu I species from the final inactive Cu I state (Scheme 1, top). Several bio-inspired mono

Scheme 1. Copper-based oxygen activation/reaction (X: substrate, XO: oxidized substrate).

and dinuclear copper complexes have been reported, but few of them act catalytically in homogeneous conditions. [4] This assessment might originate from the competitive reduction of the active $Cu^{II}(O_2)$ oxidative species (that is, superoxo or peroxo) by the additional sacrificial reductant (Scheme 1, top) that would short-circuit the catalytic cycle. Exploiting our expertise in the development of eco-aware photocatalysts for small molecules activation (such as water [5]), we report herein a unique example of a Ru^{II} - Cu^{II} dyad capable of sulfide and hydrocarbon catalytic oxidations, using O_2 as unique oxygen atom source. The covalent combination of a Ru-based photosensitizer with a Cu^{II} catalyst for O_2 activation and associated with an appropriate sacrificial electron donor

allows a controlled delivery of reducing equivalents that overcomes the undesired $Cu^{II}(O_2)$ reduction.

The $[(bpy)_2Ru(bpbpa)Cu(OTf)(CH_3CN)]^{3+}$ (bpy=2,2'bipyridine, bpbpa = N-(4-((5H-dipyrido[3,2-c:2',3'-e]azepin-6(7*H*)-yl)methyl)benzyl)-1-(pyridin-2-yl)-*N*-(pyridin-2-ylmethyl)methanamine) catalyst reported here, abbreviated as Ru^{II}_{phot}-Cu^{II}_{cat} (Scheme 1, bottom), covalently associates a light-absorbing photosensitizing [Ru(bpy)₃]²⁺-like fragment, known to be an efficient chromophore, [6] and a bioinspired copper site as the proposed catalytic oxidation locus. It was efficiently prepared in two steps from the reported $[(bpy)_2Ru(bpBr_2)][PF_6]_2^{[7]}$ and L-NH₂-bpa^[8] precursors. The catalytic moiety (CuII cat) was synthesized from the L-Pht-bpa protected ligand (Supporting Information, Scheme S1). The syntheses and the characterization for all these compounds (NMR and UV/Vis spectroscopy, elemental analysis, ESI-MS) are provided in the Supporting Information. The nature of the copper subunit coordination sphere is proposed on the basis of the X-ray crystal structure resolved for Cu^{II}_{cat} (Supporting Information, Figure S1).

The cyclic voltammogram (CV) of Ru^{II}_{phot}-Cu^{II}_{cat} in CH₃CN shows, in the cathodic region, three successive oneelectron processes between -0.7 and -1.7 V vs NHE corresponding to the reduction of the bipyridine ligands (Supporting Information, Figure S2). Surprisingly, three waves were observed in the anodic region. On the basis of previous reports and CVs recorded for Cu^{II}_{cat} and [(bpy)₂Ru-(bpbpa)]²⁺ metalloligand (abbreviated Ru^{II}_{phot}), the two oneelectron quasi-reversible waves at +1.57 V and +0.42 V vs NHE were attributed to the Ru^{III}/Ru^{II[9]} and Cu^{II}/Cu^I couples, respectively (Supporting Information, Figure S2). Thermodynamically, by considering the redox potential of the excited state of the Ru subunit(E° RuIII/RuII*) of -0.70 V vs NHE, [10] an electron transfer from the photoexcited state RuII* to the Cu^{II} is consequently favorable. The third irreversible oxidation process at +1.44 V vs. NHE (anodic peak given) was assigned to the oxidation of the tertiary amine of the bridging ligand $(N_{\Delta}, Scheme 1)$. This was further confirmed by comparison with the metal-free bdda molecule^[12] (Supporting Information, Scheme S1, Figure S2) showing a similar irreversible pattern with an anodic peak at +1.40 V vs. NHE.

The reliability of the photocatalytic system based on an intramolecular electron transfer between the excited Ru moiety and the vicinal Cu center was probed by EPR and photophysical studies. The photophysical properties of Ru^{II}_{phot} and Ru^{II}_{phot}-Cu^{II}_{cat} have been investigated in CH₃CN at room temperature, both in air equilibrated and de-aerated conditions (Supporting Information, Table S1). Both complexes display an intense absorption around 290 nm (ε = $60\,500\,L\,mol^{-1}\,cm^{-1}$ and $\varepsilon = 56\,800\,L\,mol^{-1}\,cm^{-1}$ for Ru^{II}_{phot} and Ru^{II}_{phot} - Cu^{II}_{cat} , respectively) assigned to π - π * transitions (Supporting Information, Figure S3). The broad absorption bands around 445 and 455 nm are attributed to the metal-toligand charge transfer transition ($^{1}MLCT,\,d\pi_{Ru}\!\!-\!\!\pi^{*}_{bpy}).^{[13]}$ It is worth noting that the Cu-centered d-d transitions for the dyad are not observable owing to their weak extinction coefficient ($\lambda_{max} = 615 \text{ nm}$ and $\varepsilon = 100 \text{ Lmol}^{-1} \text{ cm}^{-1}$ for Cu^{II}_{Cat}; Supporting Information, Figure S3). Upon excitation in the MLCT absorption band, both Ru^{II}_{phot} and Ru^{II}_{phot}-Cu^{II}_{cat} complexes are luminescent, with broad emissions centered at 618 nm (Supporting Information, Figure S4). The presence of the Cu^{II} moiety leads to a 70% drop of the quantum yield in air-equilibrated solution (from 1.05 ns to 0.29 ns) and 60% under Ar (Supporting Information, Table S1). Previous studies on comparable heteropolymetallic complexes featuring [Ru(bpy)₃]²⁺ and polypyridyl-Cu^{II} moieties ascribed the emission quenching to either energy or electron transfer or both processes.^[14] This point is discussed along with the transient absorption spectroscopy. The lifetime decay for Ru^{II} phot is mono-exponential and air-sensitive, which is characteristic of the 3MLCT excited state radiative decay pathway (Supporting Information, Figure S5).[13] The dyad displays a bi-exponential lifetime decay with a short (16 ns in air equilibrated solution and 31 ns under Ar) and a long component (148-328 ns; Supporting Information, Figure S6). By comparison with the mono-exponential decay determined for Ru^{II}_{phot}, the latter is ascribed to the radiative deactivation of ³MLCT excited state. Considering i) that energy transfer between the triplet excited state of the ruthenium and the singlet ground state of the copper moieties is a spin-forbidden process; ii) that the weak extinction coefficient of the Cu subunit makes energy transfer a possible but likely minor component of the excited state quenching; [14b,15] and iii) the estimated redox potential of RuII* 3MLCT excited state $(-0.70 \text{ V } \text{ vs NHE}^{[10b]})$ and the redox potential of Cu^{II} (+0.42 V vs. NHE), the quenching is most likely due to an electron transfer from the RuII 3MLCT excited state to the Cu^{II} moiety (as early observed^[14c,16]). Consequently, the short lifetime is ascribed to the decay of the excited state quenched by photoinduced electron transfer (PET). The corresponding rate, estimated to be $2.9 \times 10^7 \,\mathrm{s}^{-1}$ in argon equilibrated acetonitrile solution for Ru^{II}_{phot} - Cu^{II}_{cat} , is artificially increased in air-equilibrated medium $(5.6 \times 10^7 \, s^{-1})$, owing to the additional quenching by energy transfer to the triplet ground state of molecular oxygen. The presence of triethanolamine (TEOA, sacrificial electron donor) in the catalytic conditions slightly affects the spectroscopic properties (Supporting Information, Table S1, Figures S3, S4, and S6). All these results enforce the viability of an electron transfer from the excited $Ru^{II}*_{phot}$ to the $Cu^{II}_{cat}\!,$ rather than a reductive quenching of the RuII* phot by the electron donor (Supporting Information, Scheme S2).

The photo-assisted Cu^{II} reduction in Ru^{II}_{phot}-Cu^{II}_{cat} under catalytic conditions (that is, CH₃CN, [Ru^{II}_{phot}-Cu^{II}_{cat}] = 10^{-4} M, TEOA 200 molar equiv) was probed under Ar-saturated atmosphere by EPR spectroscopy. Spectra were recorded before (t = 0 min), and after 1 and 5 min of irradiation with a Xe lamp equipped with a by-pass filter at 450 nm (Figure 1).

At t=0 min, the EPR spectrum is characteristic of a mononuclear copper center in axial symmetry $(g_{\parallel} > g_{\perp})$ with identical features compared to isolated $\mathrm{Cu^{II}}_{\mathrm{cat}}$ (Supporting Information, Figure S7). Upon light exposure of the dyad in the ruthenium MLCT transition region at 298 K, the EPR signal rapidly decreased and completely vanished within 45 min. A complete recovery of the $\mathrm{Cu^{II}}$ features was observed upon exposure to air. The decomposition of the dyad has to be precluded, as confirmed by the full conservation of the UV features after 45 min of irradiation of $\mathrm{Ru^{II}}_{\mathrm{phot}}$

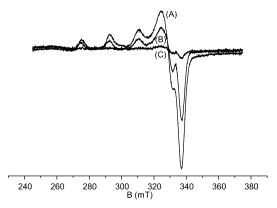


Figure 1. Evolution of the X-band EPR spectra of [Ru^{II}_{phot}-Cu^{II}_{cat}] $(10^{-4} \,\mathrm{M} + 200 \,\mathrm{molar} \,\mathrm{equiv} \,\mathrm{TEOA})$ in CH₃CN, under argon after irradiation at 450 nm. A) t = 0, B) t = 1 min, and C) t = 5 min at 100 K.

 Cu^{II}_{cat} under the same conditions (10^{-4} m with 200 molar equiv of TEOA; Supporting Information, Figure S8). We thus conclude that the disappearance of the CuII signal is due to the formation of a diamagnetic Ru^{II}_{phot}-Cu^I_{cat} species generated by a photoinduced electron transfer (PET).

Two different pathways may be suggested to explain the formation of the $Ru^{II}_{\ phot}$ - $Cu^{I}_{\ cat}$ species from the photogenerated $Ru^{II*}_{\ phot}$ - $Cu^{II}_{\ cat}$ dyad (Supporting Information, Scheme S2). In a reductive process, the Ru^{II 3}MLCT state is reduced by TEOA leading to a RuIphot-CuII intermediate (Ru^I_{phot} is used to symbolize [Ru^{II}(bpy•-)(bpy)(bpbpa)]+). An intramolecular electron transfer from the ruthenium center to the copper ion generates the $Ru^{II}_{\ phot}$ - $Cu^{I}_{\ cat}$ dyad. In a second hypothesis, PET can occur immediately after photon absorption, leading to the formation of Ru^{III}_{phot}-Cu^I_{cat} species. Subsequent reduction of the ruthenium center by TEOA yields to the Ru^{II}_{phot}-Cu^I_{cat} dyad.

Nanosecond time resolved absorption spectroscopy under catalytic conditions was used to discriminate between these two processes. The initial spectrum (black trace, Supporting Information, Figure S9) is characteristic of the ³MLCT excited state of tris(bipyridyl)-ruthenium complex, with an intense positive absorption band at 365 nm corresponding to the formation of the anionic bpy- radical. An intense negative signal at 450 nm corresponding to the bleaching of the ground-state ¹MLCT absorption is also observed. ^[18] Both bands display a bi-exponential decay ($\tau^1 = 20-23$ ns and $\tau^2 =$ 150-160 ns) of the same magnitude to those observed in luminescence decay ($\tau^1 = 16$ ns and $\tau^2 = 148$ ns). The associate rates $(k_{370} = 3.7 \times 10^7 \text{ s}^{-1}, k_{450} = 4.4 \times 10^7 \text{ s}^{-1})$ are in agreement with that estimated by time-resolved luminescence spectroscopy with TEOA ($k = 5.9 \times 10^7 \text{ s}^{-1}$). It is worth noting that the EPR experiment showed that after 45 min of irradiation, no signal corresponding to the bpy- radical anion was found at g = 1.998 (Supporting Information, Figure S10).^[19] Furthermore, a Ru^I intermediate can be ruled out as no characteristic positive absorption band at 510 nm could be detected even in presence of an excess of electron donor. [20] Therefore, this spectroscopic evidence is in agreement with an oxidative quenching of the ³MLCT state leading to a photoinduced electron transfer to the CuII from the ruthenium photosensitizer in its excited state.

The Cu^{II}-assisted reduction by the Ru^{II} photosensitizer havin been established, the photocatalytic activity of Ru^{II}_{phot}-Cu^{II}_{cat} in oxidation reactions has been evaluated using various substrates under O₂-saturated atmosphere in acetonitrile with TEOA. A blue LED system emitting at 468 nm matching the photosensitizer subunit MLCT transition was used as light source. Irradiation was held for 8 h, corresponding to the maximum conversion for 4-bromothioanisole as test substrate (Supporting Information, Figure S11). Oxidation products were quantified by ¹H NMR and the main results are summarized in Table 1. It was observed that most of the

Table 1: Catalytic oxidation of sulfides, phosphine, and alkenes by Rull phot-Cull cat. [a]

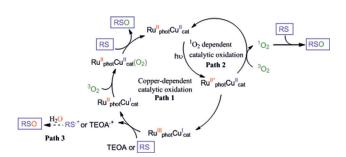
Entry	Substrate	Product	t [h]	TON ^[b] /Conversion [%]
1	PhS	sulfoxide	8	97/>98
2	4-BrC ₆ H ₄ S	sulfoxide	8	94/>98
3	4-MeOC ₆ H ₄ S	sulfoxide	8	92/>97
4	$4-O_2NBrC_6H_4S$	sulfoxide	8	10, 28 ^[c] /9, 26 ^[c]
5	Ph ₃ P	Ph ₃ P=O	1.5	100/100
6	indene	cis-diol	8	36/100
7	cyclohexene	cyclohex-2-enone	16	57/57
8	<i>cis</i> -cyclooctene	cyclooct-2-enone	16	42/42

[a] Standard catalytic conditions: $[Ru^{II}_{phot}-Cu^{II}_{cat}]$ (ca. 0.5 mm), [substrate] (ca. 50 mм], [TEOA] (ca. 100 mм), CH₃CN, RT, LED irradiation (468 nm), O2 bubbling. All given values are averages of at least two experiments. [b] TON = n(product)/n(complex). [c] after 24 h of irradi-

sulfides, except 4-nitrothioanisole bearing an electron-withdrawing group, were nearly quantitatively and selectively converted into their corresponding sulfoxides (Table 1, entries 1-4). Whatever the nature of the sulfide, no sulfone was detected even after 24 h of irradiation. Finally, the photocatalyst proved to be also efficient for phosphine and alkene oxidations, affording only phosphine oxide and the major corresponding enone respectively. Yet, while oxidation of cycloalkenes selectively gave the corresponding enone, oxidation of the aromatic indene led to the formation cis-diol (36 TON, Table 1, entry 6) and the corresponding dicarboxylic acid (not quantified). In this case, the formation of indenone as a result of the oxidation of the benzylic position was not observed.

In control experiments performed with 4-bromothioanisole in absence of either light, catalyst or O₂, no oxidation products were detected. Without TEOA, a low amount of sulfoxide was formed (8 TON), suggesting the intervention of a competitive oxidation process (see below). It has to be noted that when O₂ was replaced by air bubbling, the catalyst is still active but yielded a lower conversion (from 98 to 53 %, Table 2, entry 3). More interestingly, the intramolecular electron transfer proved to be more efficient than the intermolecular electron transfer. Indeed, the catalytic activity increased at least four-fold for the dyad compared to the bimolecular combination of Cu^{II}_{cat} and $[Ru(bpy)_3]^{2+}$ (Table 2, entry 4). Finally, when the photosensitizer-TEOA pair was

Table 2: Catalytic 4-bromothioanisole oxygenation under various conditions.


Entry	Complex	Electron donor	O ₂ source	TON ^[e]	[%] conv
1 ^[a]	Ru ^{II} _{phot} -Cu ^{II} _{cat}	TEOA	O ₂	94, 300 ^[b]	> 98, 60 ^[b]
2 ^[c]	Ru ^{II} _{phot} -Cu ^{II} _{cat}	TEOA	O ₂	98 (8 h) 195 (22 h)	> 98, 98
	•			250 (28 h)	79
3 ^[a]	Ru ^{II} _{phot} -Cu ^{II} _{cat}	TEOA	air	53	53
4 ^[d]	$[Ru(bpy)_3]_2^+$ + Cu_{cat}^{II}	TEOA	O ₂	25	25
5 ^[a]	Cu ^{II} cat	ascorbate or DTT	O ₂	0	0
6 ^[a]	Ru ^{II} phot	TEOA	O_2	25	25

[a] [complex] (ca. 0.5 mm), [4-bromothioanisole] (ca. 50 mm], [electron donor] (ca. 100 mm). [b] $[Ru^{\parallel}_{phot}$ - $Cu^{\parallel}_{cat}]$ (ca. 0.5 mm), [substrate] (ca. 250 mm], [TEOA] (ca. 500 mm). [c] $[Ru^{\parallel}_{phot}$ - $Cu^{\parallel}_{cat}]$ (ca. 0.5 mm) [4-bromothioanisole] (3 portions of 100 molar equiv spaced by 14 h, then 6 h), [TEOA] (3 portions of 200 molar equiv spaced by 14 h then 6 h). [d] $[Ru^{\parallel}_{phot}] = [Cu^{\parallel}_{cat}]$ (ca. 0.5 mm), [4-bromothioanisole] (ca. 50 mm], [TEOA] (ca. 100 mm). [e] [TON] = n(product)/n(complex).

replaced by an excess of dithiothreitol (DTT) or ascorbate, known to reduce transition metals such as cupric ions, [4b,21] no oxidation product was detected (Table 2, entry 5). This highly suggests that, as proposed, the gradual electron delivery to the copper subunit is a prerequisite to the catalytic activity.

The stability of the catalyst was also investigated. Under catalytic conditions, on the basis of electronic absorption, about 50% of the catalyst remains intact after 8 h of light exposure (Supporting Information, Figure S12). Despite this degradation, a full catalytic activity (up to 195 TON) is still detected upon addition of extra substrate (100 molar equiv) and TEOA (200 molar equiv). The activity then significantly decreased after the third addition, as only 65 additional TON were achieved within 6 h of irradiation (Table 2, entry 2). Furthermore, up to 300 TON (Table 2, entry 1, see footnote [b]) were obtained in the presence of 500 molar equiv of 4-methoxythioanisole and 1000 molar equiv of TEOA (60% yield).

Additional experiments were carried out to obtain mechanistic insights for sulfides oxidation. Based on previous reports, a general mechanism involving three main oxidation pathways can be proposed (Scheme 2). In the first common

Scheme 2. Mechanistic pathways for O_2 -dependent sulfide oxidations. RS = sulfide; RSO = sulfoxide.

step, photon absorption by Ru^{II}_{phot} - Cu^{II}_{cat} yields to photo-excited Ru^{II*}_{phot} - Cu^{II}_{cat} which might be able to generate $^{I}O_{2}$ by energy transfer (Path 2) $^{[22]}$ and/or Ru^{III}_{phot} - Cu^{I}_{cat} by electron transfer. Subsequent reduction by TEOA generates Ru^{II}_{phot} - Cu^{I}_{cat} able to form a $Cu^{II}(O_{2})$ adduct responsible of substrate

oxidation by dioxygen activation (Path 1; copper-dependent catalytic oxidation). In that reduction step, sulfide can be used as electron donor yielding to a transient RS.+ thiyl radical that further reacts with water (Path 3).[22c,23] The latter process was partly ruled out using ¹⁸OH₂ (1 molar equiv with respect to the substrate), as no labeling was incorporated using only RuII phot. Independently, the formation of ¹O₂ during the catalytic cycle was confirmed by using 9,10-dimethylanthracene (a known quencher) with the detection of the corresponding endoperoxide

product. [24] However, when the reaction was carried out without sacrificial electron donor, thus by-passing the copper-dependent catalytic pathway, only 7 TON were achieved instead of 94 in presence of TEOA. These results confirm the involvement of $^{1}O_{2}$ in the sulfide oxidation process, but to a low extent.

Most importantly, the O_2 -based process involving the reactivity of a copper oxygen-activated species (Path 1) was clearly established, because when a 1:10 mixture of the reduced Cu^I_{cat} (10 µmol) and 4-bromothioanisol in anhydrous acetonitrile was open to air, sulfoxide was formed in 70% yield with respect to Cu^I_{cat} .

yield with respect to Cu^{I}_{cat} . To conclude, the Ru^{II}_{phot} - Cu^{II}_{cat} dyad reported herein represents, to the best of our knowledge, a unique example of copper-based system capable of performing efficient catalytic oxidation of organic substrates using O2 as unique oxygen atom source under light irradiation and mild conditions. It represents an interesting alternative to other photoactivable Ru-based systems reported and using PhI(OAc)₂, H₂O₂, and H₂O as co-oxidants.^[5a,25] This study unambiguously validates our proof-of-concept in which a judiciously chosen association of appropriate photosensitizer and sacrificial electron donor can provide a gradual and controlled electron delivery to a Cu^{II} subunit for its reduction prior to O₂ activation. We also showed the efficient synergistic effect between both partners in the dyad compared to the bimolecular system for which a diffusional contact is required for electron transfer. The deciphering of the reaction pathway for alkene oxidation is under progress.

 $\textbf{Keywords:} \ \ copper \cdot dioxygen \cdot oxygenation \cdot photocatalysts \cdot ruthenium$

How to cite: Angew. Chem. Int. Ed. 2015, 54, 8415–8419 Angew. Chem. 2015, 127, 8535–8539

^[1] C.-J. Li, P. T. Anastas, Chem. Soc. Rev. 2012, 41, 1413-1414.

 ^[2] a) B. J. Wallar, J. D. Lipscomb, *Chem. Rev.* 1996, 96, 2625–2658;
 b) A. Decker, E. I. Solomon, *Curr. Opin. Chem. Biol.* 2005, 9, 152–163.

^[3] a) E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, *Chem. Rev.* 2014, 114, 3659–

- 3853; b) L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013-1046; c) C. Hess, J. Klinman, N. Blackburn, J. Biol. Inorg. Chem. 2010, 15, 1195-1207.
- [4] a) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329-2364; b) I. Gamba, S. Palavicini, E. Monzani, L. Casella, Chem. Eur. J. 2009, 15, 12932-12936; c) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234-6458.
- [5] a) O. Hamelin, P. Guillo, F. Loiseau, M.-F. Boissonnet, S. Ménage, Inorg. Chem. 2011, 50, 7952-7954; b) P. Guillo, O. Hamelin, P. Batat, G. Jonusauskas, N. D. McClenaghan, S. Ménage, Inorg. Chem. 2012, 51, 2222-2230.
- [6] a) E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047 1076; b) H. R. Lucas, L. Li, A. A. Narducci, M. Sarjeant, A. Vance, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2009, 131, 3230 -
- [7] P. Guillo, O. Hamelin, J. Pécaut, S. Ménage, Tetrahedron Lett. **2013**, 54, 840 - 842.
- [8] a) M. Gennari, M. Tegoni, M. Lanfranchi, M. A. Pellinghelli, M. Giannetto, L. Marchiò, Inorg. Chem. 2008, 47, 2223-2232; b) W. T. S. Huck, L. J. Prins, R. H. Fokkens, N. M. M. Nibbering, F. C. J. M. van Veggel, D. N. Reinhoudt, J. Am. Chem. Soc. 1998, 120, 6240 - 6246.
- [9] a) F. Teplý, Collect. Czech. Chem. Commun. 2011, 76, 859-917; b) A. B. P. Lever, Inorg. Chem. 1990, 29, 1271 - 1285.
- [10] a) M. Haga, E. S. Dodsworth, G. Eryavec, P. Seymour, A. B. P. Lever, Inorg. Chem. 1985, 24, 1901 - 1906; b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Coord. *Chem. Rev.* **1988**, *84*, *85* – 277.
- [11] A. Adenier, M. M. Chehimi, I. Gallardo, J. Pinson, N. Vilà, Langmuir 2004, 20, 8243-8253.
- [12] I. El-Sebai, A. M. Farghaly, H. M. Salama, *Pharmazie* 1977, 32, 329 - 331.
- [13] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani in Photochemistry and Photophysics of Coordination Compounds I, Vol. 280 (Eds.: V. Balzani, S. Campagna), Springer, Berlin, **2007**, pp. 117–214.
- [14] a) C.-F. Chow, M. H. W. Lam, W.-Y. Wong, Inorg. Chem. 2004, 43, 8387-8393; b) C. P. Myers, B. P. Gilmartin, M. E. Williams, Inorg. Chem. 2008, 47, 6738-6747; c) N. Isoda, Y. Torii, T. Okada, M. Misoo, H. Yokoyama, N. Ikeda, M. Nojiri, S. Suzuki, K. Yamaguchi, Dalton Trans. 2009, 10175-10177; d) C. P. Myers, J. R. Miller, M. E. Williams, J. Am. Chem. Soc. 2009, 131, 15291 – 15300.

- [15] a) J. E. Baggott, M. J. Pilling, J. Phys. Chem. 1980, 84, 3012-3019; b) B. Geißer, R. Alsfasser, Eur. J. Inorg. Chem. 1998, 957 -963; c) F. Bolletta, I. Costa, L. Fabbrizzi, M. Licchelli, M. Montalti, P. Pallavicini, L. Prodi, N. Zaccheroni, J. Chem. Soc. Dalton Trans. 1999, 1381-1386; d) G. Ajayakumar, K. Sreenath, K. R. Gopidas, Dalton Trans. 2009, 1180-1186.
- [16] K. Yamaguchi, T. Okada, S. Suzuki, Inorg. Chem. Commun. **2006**, 9, 989 – 991.
- [17] A. Kunishita, H. Ishimaru, S. Nakashima, T. Ogura, S. Itoh, J. Am. Chem. Soc. 2008, 130, 4244-4245.
- [18] a) N. H. Damrauer, T. R. Boussie, M. Devenney, J. K. McCusker, J. Am. Chem. Soc. 1997, 119, 8253-8268; b) N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, J. K. McCusker, *Science* **1997**, 275, 54–57.
- [19] D. E. Morris, K. W. Hanck, M. K. De Armond, J. Am. Chem. Soc. 1983, 105, 3032-3038.
- [20] a) S. Fukuzumi, T. Kobayashi, T. Suenobu, Angew. Chem. Int. Ed. 2011, 50, 728-731; Angew. Chem. 2011, 123, 754-757; b) T. Stoll, M. Gennari, J. Fortage, C. E. Castillo, M. Rebarz, M. Sliwa, O. Poizat, F. Odobel, A. Deronzier, M.-N. Collomb, Angew. Chem. Int. Ed. 2014, 53, 1654-1658; Angew. Chem. 2014, 126, 1680 - 1684
- [21] J. G. Charrier, C. Anastasio, Atmos. Chem. Phys. Discuss. 2012, 12, 11317-11350.
- [22] a) C. S. Foote, J. W. Peters, J. Am. Chem. Soc. 1971, 93, 3795-3796; b) F. Jensen, A. Greer, E. L. Clennan, J. Am. Chem. Soc. 1998, 120, 4439-4449; c) S. M. Bonesi, I. Manet, M. Freccero, M. Fagnoni, A. Albini, Chem. Eur. J. 2006, 12, 4844-4857.
- [23] M. Ganesan, V. K. Sivasubramanian, T. Rajendran, K. Swarnalatha, S. Rajagopal, R. Ramaraj, Tetrahedron 2005, 61, 4863-
- [24] E. Albiter, S. Alfaro, M. A. Valenzuela, *Photochem. Photobiol.* Sci. 2015, 14, 597-602.
- a) T.-H. Chen, Z. Yuan, A. Carver, R. Zhang, Appl. Catal. A 2014, 478, 275 – 282; b) F. Li, M. Yu, Y. Jiang, F. Huang, Y. Li, B. Zhang, L. Sun, Chem. Commun. 2011, 47, 8949-8951; c) K. Kozawa, A. Inagaki, M. Akita, Chem. Lett. 2014, 43, 290-292.

Received: February 6, 2015 Revised: March 20, 2015

Published online: May 27, 2015

8419